
Retrofitting Objects

Robert E. Filman
IntelliCorp

1975 El Camino Real West
Mountain View, California 94025

Abstract 1. Motivation

I present the results of an czperiment in retrofitting
objects into an elisting system. I describe a tech-
nology, based on automatic redefinition of ezisting
functions, that allowed alternative implementations of
the fundamental data types of the KEflM knowlcdge-
based system building tool. This technology G appli-
cable in environments where the system’s procedures
can be subject to programmatic manipulation. It
allows the retrofitting of objects into the implemen-
tations of other eziating systems. The experience
of retrofitting objects into KEE provides insight into
the issues of the interaction of semantic classes and
data representation and granularity in object-based
systems.’

1 Thie research was supported by the Defense Advanced
Research Project Agency under Contract FS0602-86-C-4065.
The View8 and conclusions reported here are thoee of the Puthor
and ehould not be construed M representing the oWcihr pcuition
or policy of DARPA, the U. S. government, or IntelliCorp.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1987 ACM O-89791-247-0/87/0010-0342 $1.50

The KEE system is a tool for building knowledge-
based systems [l]. KEE integrates several AI problem-
solving paradigms, including frames, inheritance, pro-
duction rules, access-oriented programming (demons),
object-oriented programming, multiple-worlds, and
truth maintenance, with facilities for querying, alter-
ing, and displaying the resulting structures.’ The
primary representational object in KEE is the unit.
For example, we could represent Clyde the elephant
as a Clyde unit. Units exist in a (multiple-parent)
hierarchy, with both member and subclass links. For
example, Clyde might be a member of the classes
of Indian.Elephants and Circus .Elephants, them-
selves subclasses of Elephants. Relations are ex-
pressed as slots on units. For example, if the Color slot
on Clyde has value Pink, then (one of) Clyde’s colors
is pink. KEE has two kinds of slots, own slots that
describe properties of the object itself, and member
slots for the properties of a class. Thus, Color on

’ While there are several general insights gained from this
research, the fiber of the work is heavily interwoven with its
environment-the KEE system. KEE haa been both the target
and the tool; it will be diWcult to understand this presentation
without a few KEE concepts. The reader will therefore forgive
me if I begin with a short overview of KEE. We should also note
that the comments in this document about the implementation
of the KEE system refer to version 2.1 of that system; some of
the results of this research have been incorporated in the KEE
system 3.0 release. KEE is a trademark of IntelliCorp.

342 OOPSLA ‘87 Proceedings October 4-a,1987

Clyde is an own slot, while Color on Elephants, a
member slot. Member slots inherit to member slots
in subclasses and to own slots in elements. The
particular form of the inheritance is controlled by
the inheritance role of the slot (one of the facets
that can be used to annotate slots). One of the
representational tricks that’s done with KEE is to
place functions as the values of slots, allowing the user
to perform object-oriented programming by sending
messages to these units indexed by these slot names.
The method inheritance role performs a simplified
Flavors mixins [2], allowing assembly of methods from
parts (befores, after3 and wrappers).

the KEE system that ‘user data type z,” ‘integers
between 100 and 1000,” %trings,” “lists whose car
is the atom banana” and ‘Yiles” are each possible
data structures for units. Of course, we also have
to (and want to) tell the system what it’s supposed
to do when someone asks for the value of the fruit
slot of the string-unit “Lisa loves apple juice. ‘I
Accomplishing these goals has the further by-product
that we may be able to impose the KEE system on
already existing programs-for example, adding KEE
to an existing CAD system and then using,it to reason
about the devices being created.

Thus, the KEE system is a tool for, among
other things, object-oriented programming. However,
while KEE supports object-oriented programming,
KEE itself is built using classical function calls and
record-structured data.3 In selecting these functions
and data structures, the KEE system’s designers
optimised the system for representing, accessing, and
dynamically updating a large variety of information
about relatively few things. That is, users can
dynamically create and delete slots, specify constraints
on the number and type of values a slot can have,
define new inheritance mechanisms, attach active val-
ues, etc. To support that functionality, units are
non-trivial structures-they are large, require unique
names, are sequentially stored in several places, and
so. forth. Effectively, the current KEE system im-
plementation trades space (and, to a lesser extent,
time) for generality and expressive ability.4 This is
not because the KEE system is poorly implemented-
units are powerful, general structures that perform
their tasks efficiently. But when a particular kind
of unit always has a specific set of slots, or the
values of a slot are never inherited, coerced, or
mutilated by demons, the user is paying a significant
storage and execution-time penalty for using the KEE
system.

In the above discussion, we have glibly spoken of
treating arbitrary data structures as ‘units.” But like
most systems, KEE grew like Topsy, without formal
specifications. Thus, when we ask, “What exactly
is a unit?’ we conclude that a unit is something
that does unit-like things when the unit functions are
applied to it. For example, after doing (put .valuee
unit slot values)5 the result of (get .values unit
slot) is values. Lacking a more formal specification,
we assert that the unit functions are the (approxi-
mately) 135 functions on units and slots defined in
the KEE system users manual. We call the origi-
nal KEE system implementation of units and slots
classical; any ersats implementation is virtual. A
particular instance of a virtual unit is a member
of some virtual-unit type. We use the term shape
as a shorthand for virtual-unit type, attempting to
convey the mapping to the different arrangements of
machine storage used to implement different virtual-
unit types. In general, a programmer wants to define
a shape, and then to create instances that have
that shape.

The goal of this work was to ease these limitations.
Ideally, we would like to be able to treat any Lisp
object as a unit, and to have the KEE system functions
that manipulate units and slots deal with these new
types of units. That is, we’d like a way to tell

’ This being a consequence of the technology available at the
time the KEE eyatem was originally built and the necessity of
quickly developing a fast implementation.

Now, if we really want units that behave just
the way classical units do, we should have abandoned
this project. The original designers of the KEE
system did a good job of implementing the system
core. The best way of achieving the full KEE system
functionality with a reasonable time efficiency is to
do it the way it was done. What we want from
virtual units is a means of sacrificing functionality in
return for improved time and/or space efficiency. For
example, by decreeing that virtual units cannot be
used to represent classes, we can build faster value
storing functions- faster because they do not have to
inherit values. By denying a particular shape user-
settable facets, we can save storage. By declaring

’ For example, a unit with a single parent and four local
single-valued slots requires 135 Lisp cella in the KEE system

’ For the reader unfamiliar with the KEE system terminol-

version 2.1. This ia really only five cells of information.
ogy, the Appendix is a glossary of the KEE system functions we
mention in this paper.

odober 4-8, i 987 OOPSLA ‘87 Proceedings 343

that a shape has a specific set of slots, we can avoid
dynamic slot allocation and search. Thus, we expect
that most shapes will not have the full functionality
of units-only the functionality important to the task
they are to perform. Correspondingly, we are entitled
to create shapes that behave differently than the
classical shape-for example, a read-only unit that
ignores calls to put .values, an unaccountable unit
that does not record who modified it last, a logging
unit that remembers everyone who accesses its slots,
or an active database unit that responds to get. value
calls by interrogating a database server. Thus, the
same technology that enables our abbreviating or
omitting functionality can be used to enhance or
extend functionality.

Having asserted that a unit is something that
does unit-like things, we ought to overview what
(some of) those things are. A unit is primarily a
storage structure. It stores four kinds of information:
slot values; slot facets; unit and slot properties;
and miscellaneous unit information, such as the unit
name, inheritance links, knowledge-base, and creation
time. (We call this last class of information tags.)
There are functions for creating, storing, retrieving,
and deleting each kind of information; often the
modification of one kind of information can affect
another. [For example, updating a slot changes
the modification date. Semantically, checking the
value of a slot involves retrieving the values of the
same slot from the unit’s parents (though clazsi-
cal KEE optimizes this action by updating values
in the children when a parent changes).] Units
can be tested for equality, dynamically created and
destroyed, and saved on and retrieved from long-
term storage. Units can also be displayed using the
KEE interface, created and modified by queries and
assertions, and examined in the forward and backward
chainera. Thus, units live in a rich soup-many
utilities already know how to deal with units; we
want alternative implementations to take advantage
of these utilities.

The remainder of this paper is devoted to de-
scribing how to retrofit objects into Lisp systems.
I describe both a technology of object retrofitting
that is applicable in many programming domains and
the specific implementation of that technology in the
KEE system. I have implemented that technology
in the form of a prototype virtual-units KEE system
and have built a prototype demonstration system
using that technology. (This demo shows a system
of 3200 virtual units simulating Conway’s game of
Life [3],) In this paper, references to the prototype
and demonstration systems refer to these systems.

2. The application and
construction problems

The above problem description demands, in essence,
that we retro-fit object-oriented programming into
the implementation of the core of the KEE system.
The three primary elements of an object-oriented
programming system are objects, messages, and han-
dlers. Objects are the primitive program elements-
the atoms of programming chemistry. The behavior
of an object is induced by sending that object a
message. Pragmatically, each behavior is implemented
by running the appropriate handler (a program, or,
in Lisp terms, a function) when an object receives
a message. That is, message reception and function
application are isomorphic. Thus, if the function
get . handler(object, mag-type) determines the han-
dler for object when sent a message of type msg-type,
what an object-oriented programming system is really
doing is

apply(get . handler(object,
message-type(messuge)),

(object . arge(meaaage))).

Thus, Sending a message is syntactic sugar for apply-
ing a function. What an object-oriented programming
system does is simplify specifying which function ought
to be applied in a given situation.

The task of building an object-oriented program-
ming system has two primary subtasks. The first of
these, the application subtask, involves arranging one’s
system so that the above application actually takes
place. That is, if H is the handler for message M on
object 0, we want M messages to 0 to invoke H.

The careful reader has noticed that object-oriented
programming is not magic-it is not providing us with
any computational power beyond our original mecha-
nisms. We could build the function corresponding to
the universal interpretation of message m as a giant
series of if . . . then . . . else if . . . clauses. That is, if
the object is in the class handled by handler hl, then
apply)tr, otherwise if it is in the class handled by hl,
and so forth. Object-oriented programming gives us a
nicer ayntaz for saying these things. It is allowing us
to define these handlers incrementally and textually
local to the object class, not the message type (and,
in implementation terms, may give us a more efficient
indexing algorithm). Thus, the second subtask of the
object-oriented programming system implementation
task is building mechanisms to help the user construct
and associate handlers with messages and objects. We
call this the construction task.

344 OOPSIA ‘87 Proceedings October 4-8, 1987

So the task of implementing virtual units in to define 135 functions. These tend to be complicated
the KEE system boils down to doing three things: functions, as they embody the full KEE system core
(1) identifying the appropriate places to insert virtual functionality. On the other hand, while we don’t want
units into the existing system, (2) changing the mech- to require the implementor of a shape to have to define
anisms of the KEE system to recognize when we’ve 135 functions, we don’t want to preclude his having a
got a virtual unit and apply the appropriate handler particular special implementation of, say, put. values.
(the application task), and (3) building tools to help That is, we want to require the definition of as few
the user develop virtual unit types (the construction functions as possible, but to allow the redefinition of
task). I consider these in the next three sections. as many as desired.

3. Inserting virtual units into
the core

One way to implement virtual units would be to
reimplement the KEE system core, changing the
unit accessing and modifying functions to recognise
alternative unit implementations. Unfortunately, that
approach has several drawbacks: (1) it runs the
risk of dramatically slowing KEE, (2) it requires
changing code in too many places, (3) it is a good
way to infest the system with bugs, (4) it provides
little positive guidance to the builder on to how to
actually create a new kind of virtual unit, (5) it
leaves unclear the semantic effect of changing parts
of the underlying data structures, and (6) it requires
recompiling the system to introduce another unit
structure. These problems, particularly the fourth
and sixth, imply that it was best to do this work
on the ‘surface” of the KEE system’s core. Let
us examine that layer, and other layers, in greater
detail.

Our resolution of this problem centers on selecting
a core set of functions, the virtual layer. With these
functions, we can implement the functions on the user
layer (Figure 1). In the prototype system, this layer
has 34 simple functions. Typical functions at the
virtual layer include creating a slot in a unit, retrieving
the local value of a slot, and storing a new local
value. Thus, in addition to being smaller than the user
layer, the functions in the virtual Iayer are typically
semantically simpler.

3.1. Layers

The basic unit accessing and modifying functions form
an architectural layer. The user-level functions (the
135 functions in the KEE system manual that we
alluded to earlier) also form a layer. In general, it is an
established design principle to build systems in layers,
with a well-defined interface between layers. For
example, classical hardware architecture provides a
microcode machine to the microcode writer, microcode
to the machine instruction writer, machine instruc-
tions to the compiler writer, and a programming
language to the application writer. The virtual units
project required identifying a layer in the software
architecture of KEE, inserting at that layer the choice
of the virtual alternative, and (for each shape) in-
stantiating that layer. We call the 135 user-manual
functions which are to respond to virtual units the
user layer.

We chose the functions in the virtual layer to allow
the programmatic expression of the functionality of
the user layer. For example, the user-layer function
get .value can, independently of the implementa-
tion of its operands, be defined a8 the car of the
get .values on the same operands (preserving its
original semantics). Similarly, the user-layer function
add.value, parameterized (roughly) over unit, slot,
and new. value, can be implemented as (1) creating
slot if it does not already exist, (2) retrieving the
datatype of clot, (3) coercing the new value accord-
ing to the datatype, (4) retrieving the old local
values of slot, aa (5) if new .value’ is not one
of them, storing the addition of new.value to old
local values in slot, (6) retrieving the values of
the parents of slot, (7) retrieving the inheritance
role of slot, (8) combining the new values with
the parent values, (9) installing the result a8 the
derived value of slot, (10) determining the appropri-
ate active values, and (11) running them. Each of
these steps is a programmatic combination of virtual-
layer elements. The key point is that the user-layer
functions can be (programmatically) built from the
virtual layer.

4. The application task

Unfortunately, the user layer is too big. We do
not want to require an implementor of a shape to have

Functions become sensitive to virtual units by being
uadvised” to check their arguments before executing
their normal behavior. Advising a function is redefin-
ing it by wrapping additional code around the original
definition of the function. This works in the Lisp
environment because calls to function F are routed
through the function cell of F. (We could perform

October 40,1987 OOPSLA ‘87 Proceedings 345

put.facet.valuQ

The virtual layer

unit.putprop

store.value

unit.comment

Plgure 1: The virtual and user layers

the same trick in compilation-based environments if we
had access to the source code and convenient systems
for automatically parsing and modifying it.) In our
implementation, this advice is generated automatically
when the user specifies that a particular function is to
be sensitive to virtual units.

The application process requires discovering the
appropriate handler for a message and then invoking
that handler. If we are to find the right handler for
something, we need some characteristic that distin-
guishes the different classes of things. These are the
shapes. Each virtual unit (that is, anything that is
to be treated as a unit) must belong to a shape. It
must be possible to determine (constructively) the
shape of a given virtual unit. That is, we need
a function that, given a candidate unit, returns its
shape if it is a virtual unit (and nil if it is not).
To obtain adequate system performance, this function
must be fast. For example, a typical use of virtual
units might include only shapes that are user data
types. In many Lisp systems, the data type of an
object is easy to determine and is represented by some
symbol. An object whose data type symbol has a
particular property could then be recognized as an
element of that shape; the value of that property
could be an index of handlers. Alternatively, we could

restrict virtual unite

I slot.role

to array-shapes (like Flavors), _ _
keeping the handler table in the first element of the
array.

When an advised function is called with a virtual
unit, it should obtain from that unit’s shape the
handler for that function. The handler is the definition
of that function for that type of unit. We run
that handler on the virtual unit and the remaining
arguments. That is, to invoke the function (f u . . .)
on the virtual unit u, we want to:

(apply* (lookup (shape u) f) u . . .)

This expression is, of course, isomorphic with the ex-
pression that defines an object-oriented programming
system. We call the result of shape a representation
structure.

In the prototype implementation, we have two
different types of objects as possible values of function
shape: classical KEE units and hash arrays. In the
first case, lookup does a get. value with f as its slot;
in the second, lookup does a gethash.

The following code summarizes the change in the
behavior of advised functions. To sensitize a function
(f u a b c . . .) to its first argument? u, as a virtual
unit, we redefine it as

346 OOPSLA ‘87 Proceedings Ocbber 441987

ModlIld by ?Ilman on 6-26-07 15:41;39

own r1oc AmIAcEl.VuuE horn fEF.aoor
Inkritmcu: MEtnoD
VaIucClarr: FINCTKIN
V&U: RCW/ADD.VA~.Vltvt

own sbc Am.vALle from nF.PnoDt
lnhuimtcr:YTttm
ValwClarr: FUNCTION
varwa: RooTlAm.vNuL

Own sloe Am.vMuEs horn RopaDDT
Jnkritancu: YETnm
VakClaw FUIWTUW
Valusr: ROOTJADDNALUU

Figure 2: Unit display of part of REP. PROPL

(if (classical .unitp u)
then (f’ u a b c . ..)
elee

(let ((u’ (or (unitref erence* u) u)))
(if (classical .uuitp u’)
then (f’ u’ a b c . . .)
else

(let ((vrep (shape u’)))
(if vrep
then

(let ((handler
(lookup vrep f)))

(if handler
then

(apply* handler u’
a b c . ..)

else
(error Yh&uown handler”)))

else (f’ u a b c . ..))))))

where classical.unitp tests if a unit is a classical
unit, and f’ is the original definition of f. That is,
first we check to see if we’ve been given a classical
unit data type. If so, we execute the original definition
of the function. Next we consider if we’ve been

given the name of a unit. We search for a unit by
that name; if we find a non-classical instance, we
apply the handler of that unit’s shape and function
to the appropriate arguments. Otherwise, we execute
the original function. (This particular definition
is skewed towards minimising interference with the
classical KEE system-we check twice for classical
representations before considering virtual alternatives.
In a system dominated by virtual units, the Srst of
these checks could be eliminated. Also note that,
in contrast to most other systems, this definition is
complicated by KEE provision of both pointers to unit
structures and separate unit names, either of which
Can be used to reference a unit.)

In practice, we have defined a series of functions
that add the appropriate advice to KEE system
core functions. Different functions are used for core
functions over one, two and three %nit” arguments,
and for core functions that reference slots. Variants
and parameterisations of these functions allow for
different orders of parameters, alternative handlers,
and for the computation of fix-up functions after
calling an alternative handler (for example, redefining
get .value to be (car get .valuee)). These tech-

October 4-8,1987 OOPSLA ‘87 Proceedings 347

unit.putprop

unit.commant

Figure 3: Spaghetti between layem

niques fail when the underlying functions exhibit too
much syntactic variation or are themselves macros for
compiler optimization. In the KEE system, about a
dosen functions need individual treatment, such as the
functions for returning a unit or slot from unit and slot
names and the functions for creating a unit (as there
is no virtual unit object on which to index before the
creation).

5. The construction task

For the purposes of ease of program development,
automatic inheritance and method combination, we
choose to represent collections of handlers as units.
The idea is that the representation structure of any
shape is a unit. Each advised function is the name of
an own slot in that unit; the handler for that advised
function is the value of that slot. Figure 2 shows
the Crst part of the unit display of the representation
structure unit REP. PROPL for the shape PROPL units.
The actual unit has about 180 slots. (PROPL units
store their data in Uproperty-list format,” and are
uninteresting except for their complete functionality.
The additional facets in the unit display are directives
to the automatic advice mechanism.) Thus, doing an
add. child on a unit of shape PROPL retrieves the

function root/add. child from the add. child slot of
REP.PROPL and applies that function to the original
arguments.

The advantage of representing representation
structures as KEE system units is that we can use
method inheritance to obtain default values for han-
dlers. (As discussed below, we can also use method
combination to assemble handlers from components.)
We provide default implementations of the user-layer
functions in terms of the virtual-layer functions. We
call the implementation of a higher-layer function in
terms of a lower-layer ones spaghetti, as higher-layer
functions take a twisting and tangled path down to
the lower-layer functions (Figure 9). The implementor
of a shape who wishes a specialised version of a user-
layer function can defeat this default. Using the KEE
system’s standard inheritance mechanisma (typically
method inheritance for functions) we obtain both
default behaviors and the ability to override defaults.

For each advised function, the implementor of a
shape can (1) inherit the default action, (2) specify a
particular action, or (3) simply leave the action empty.
That is, we have virtual units because we do not
need all the functionality of classical units; one way of
simplifying functionality is to omit functionality. For

340 OOPSiA'87 Proceedings october4-8, 1987

Figure 4: The REP.STRUCTURES knowledge base

example, we expect that shape implementors will often
create shapes that lack unit names, are not known
to their knowledge base or parents, not writable to
permanent storage, lack facets, or do not coerce values
before putting them in slots.

Figure 4 shows the REPSTRUCTURES knowledge
base from the prototype demonstration system. Solid
lines indicate subclass relations; dashed, set member-
ship. It has representation structures for four shapes:
REP .PROPL, REP. IMAGE, REP. CELL and REP. ACTOR.
REP .PROPL units are four-element lists: a special sym-
bol (SSSPropLSSS), and lists of slots, tags, and prop
erties, each stored as a property list. REP.IMAGE and
REP. CELL are compact record-structured representa-
tions of units with known slot structures. These repre-
sentations were generated by calling a representation-
structure generating function; some of the handlers
were then improved by substituting optimised func-
tions in particular slots. REP. ACTOR units are storage
for simple active values (demons). They take up five
cells, have room for each of the four KEE 2.1 system
active-value slots, and have only the minimal handlers
to establish values and invoke demons.

At the top of the REPSTRUCTURES knowl-
edge base are the class units RRP.PRIMS, REP.ROOT
and REP. AUX. Unit REP. PRIMS has member slots for
each function on the virtual layer; REP #ROOT, each
function on the user layer. Thus, there are 34 slots
in REP -PRIMS and 135 in RRP . ROOT. Unit REP. AUX
contains about a dozen Uauxiliary” functions that
express recurring concepts in the space between the
user layer and the virtual layer-for example, the
concept of the “active value units interested in this
slot.” In general, the default values in REP. ROOT are
programmatic combinations of the functions in these
three units. That is, functions such as get, values
and put. facet .value are expressed in terms of the

available primitives. The default values in REP. PRIMS
are empty-these are the foundation on which other
data types are built; we can say little about them
a priori. (Slots in RRP.AUX are like REP.ROOT; they
differ in that they are functionality needed by shape
builders, not KEE system users.)

We expect that, except for specialized shapes, all
shapes would be children of these three. Thus, units
such as REP .PROPL have slots for each virtual-layer
function, each primitive function, and each auxiliary
function. The values of the virtual-layer and auxiliary
functions are typically inherited, while the primitive
functions are more locally defined.

The middle of the unit structure of the knowledge
base is dominated by units such as REP .PULL and
REP. TAGS. The idea here is that certain implement*
tion decisions imply that a class of virtual functions
can support related handlers. FOF example, REP. PULL
embodies the idea of “pull inheritance,” described
below. It defines handlers for intermediate value stor-
age and retrieval functions such as retrieve .data,
retrieve.facet.data, and store.data. REP.TAGS
compresses the idea of additional information (the
tags) being stored and retrieved through one uniform
mechanism. That is, the developer of a shape provides
primitives for storing and retrieving a (tag, value)
pair, and the tags structure defines functions such as
unit. comment as retrieving the (comment, z) value.

5.1. Programming with components

The units REP. COERCERS, REP. TELLPROPPARENTS,
REP. TELLPARRNTS, and the subclasses of REP. REGNAMS
and REP. RECORDSPROPHANDLERS store information for
component programming. The idea here is.similar to
that available with mixins in the flavors packages of
Zeta-lisp 121. Often, functionality can be expressed

October 4-8,1987 OOPSLA ‘87 Proceedings 349

S: (Wrapper (W l))

Figure 5: Method inheritance: (U (progn (B) (progl (P) (A))))

as a collection of actions to be taken (grains). For
example, creating a unit with name z involves not
only allocating the storage for that unit, but also
interning z in the system’s oblist mechanism and
informing the current knowledge base of the new unit
(registering it). These last two are independent of the
shape of the newly created unit, and independent of
each other. The creator of a particular shape might
not want the conventional interning and registration
actions. That is, units in a particular shape might not
have names, or might always be put in a particular
knowledge base independent of the current knowledge
base. Nevertheless, the naming and registering activi-
ties need to be coordinated over different functions-
the action taken on creating a unit implies particular
corresponding actions on transferring that unit to a
different knowledge base, arid renaming, copying, or
deleting it.

The method inheritance mechanism in the KEE
system allows us to take advantage of the natural
grain of programs. This mechanism allows the user
to specify m&ins, ubefore,” “after,” and “wrapper”
actions to be combined with a major functionality.
Figure 5 shows a unit hierarchy with the local values
for several units for slot a. This slot inherits with
method inheritance. The derived value of this slot is
W (progn 03) (progl (P) (A)))).

Some activities can be divided into grains, and
some of these grains have alternative behaviors for dif-
ferent shapes. We can take advantage of this graininess

in the structure of our representation knowledge base.
In particular, we implement the related alternatives
as mixins on slots of representation units. Any shape
that is to have such behavior can simply be made a,
member of such a class unit. For example, in the RIP-
STRUCTURES knowledge base, units of shape REP. PROPL

are installed on their parent’s list of children, coerce
new values, and registered and named by making
REP .PROPL a member of the classes REP. TELLPARENTS,

REP .COERCERS, and RIP. REGBNAMED. If we did not
want REP .PROPL units to coerce their values, we would
simply omit the link to REP. COERCERS.

5.2. Automatic generation of shapes

The unit REP. RECORDS represents a schema of shapes.
Units of this form are a record structure with a prede-
fined set of slots. We have a function, MAKE. VIRTREC,

paranieterized by attributes such as (1) the name
of the new shape, (2) the names and valueclasses
(type constraints for valid values) of the particular
slots of this shape, (3) default classes and prototypes
for newly created units, (4) whether additional slots,
facets, or unit or slot properties are to be allowed,
and (5) whether units of this shape are to coerce
their values, inform their parents, be stored in their
parents, and/or inform their knowledge base. Ex-
ecution of MAKE.VIRTREC creates a shape (and its
associated unit) of the given name and with the

specified properties. In the demonstration knowledge
base, REP. CELL and REP. IMAGE are precisely this kind

350 OOPSIA ‘87 Proceedings October 4-8,1987

of representation. Component functions, such as
value coercion and naming, are achieved by making
(or failing to make) the newly created representation
structure a child of the appropriate component unit.
MAKE.VIRTREC writes functions specific to other parts
of the parameterisation for the primitives required
for that particular shape; the other primitives and
composite functions are inherited from REP. RECORDS.
F’or example, if we create a record-structure shape with
fields A, B, and C, MAKE. VIRTRBC defines field-accessing
and field-storing functions for that shape that include
case statements over the names A, B, and C.

6. Run-time considerations

6.1. Untangling the spaghetti

The spaghetti mechanism (defining high-layer func-
tions in terms of combinations of lower-level ones)
in many ways reflects standard programming prac-
tice. However, the virtual unit technique requires re-
deriving the shape of a particular unit and searching
for its handler repeatedly through the spaghetti tangle.
This re-derivation and search can, in many cases, be
compiled-out. That is, we can (and have) automat-
ically transformed the handlers of particular shapes
into macros that recognize that their unit is of the
given shape and compile precisely the required routine.

6.2. Development and execution
environment 8

This section has described a development environ-
ment for building virtual units. At run-time, it
is only important that the values of the handlers
be present, not the structures used to build them.
Thus, the RBPSTRUCTURES knowledge base is not
needed at execution-time--only a structure to map
between the external function name (‘get. values”)
and the handler for that function for a particular shape
(‘propl/get . values”). While this structure can be a
unit, we have also implemented it as a hash table and
as a record of pre-defined field names.

7. Limitations of this approach

This approach has several limitations. Some of these
are caused by our desire not to completely imitate the
functionality of classical KEE. The most prominent is
the timing of inheritance. The KEE system modifies
the children of a unit when a member slot is changed.
We call this pwh inheritance, because values are
“pushed” from parents to children. Thus, when the

value in a parent changes, demons attached to the
children can awake and make their effects visible. In
a large, virtual-unit-based system, we can expect that
most classes will not have an explicit list of their
children. This may be because: (1) there are too many
children to list, (2) the children exist only implicitly
in some database or on permanent storage, (3) the
children form an infinite set (e.g., ‘the integers”),
(4) the children exist only implicitly as the result
of some computation, and (5) for garbage collection,
storage space, or security reasons, extra pointers to the
virtual units are inappropriate. Obviously, one cannot
do push inheritance to unknown children. Instead, any
inheritance of values to such units must take place at
access time. We call such inheritance pull inheritance.
Ordinarily, the time of inheritance would be invisible
to a user-the most straightforward (i.e., side-effect
free) semantic definition of inheritance cannot distin-
guish between systems implemented with push and
pull inheritance. However, the KEE system’s active
value mechanism makes the internal workings explicit.
By appropriately using (or misusing) active values, a
user can obtain a great deal of information about the
ordering of the KEE system’s internal operations.

Who points to a unit ? The KEE system keeps
a pointer to a unit on the property list of its name
(the KEE system’s implementation of an oblist), in
the unit entities, in its parents and children, in the
unit’s knowledge base, in the value part of anything
it is a value of, and on the property list of some
of its slotnames (for pattern-directed queries). The
implementor of a shape can choose which of these to
perpetuate. In particular, it may prove worthwhile to
reixnplement the search mechanism for those slots for
which linear search is inappropriate.

The virtual unit system described above, where
higher layers are implemented in terms of lower ones,
suffers in that the system repeatedly determines the
shape of a unit as it unravels the spaghetti. This
can be alleviated by (1) compiling-out the lookups,
and (2) restructuring the KEE system to reduce the
type-dependent distance between the user layer and
the virtual layer. That is, if the system definition of
get -value is (car get .valuee), there is no cycling
penalty for using get .value.

In the prototype virtual unit implementation,
I made several assumptions that serve as a priori
limitations on the functionality of virtual units. I
assumed that (1) virtual units cannot be classes (they
cannot have subclasses or members, or member slots),
(2) virtual unit slots are multiple-valued, (3) active
values are not necessarily run at the same time and
in the same order as classical units, and (4) slots are

October 4-8,1987 OOPSLA ‘87 Proceedings 351

not unique data structures. These assumptions are
not inherent in the virtual unit mechanism, but were
chosen for expediency.

9. Status of the Implementation

8. Advantages of this approach

Having listed our faults, we are entitled to mention a
few of our virtues. Of course, there are clearly many
performance advantages in having virtual units. In
this section, we are concerned with the advantages that
this approach provides, in contrast with other possible
implementation alternatives.

As part of our research, we have built a prototype
implementation of virtual units. This prototype
includes the full user-layer functionality. We imple-
mented several shapes, and created a function that
generates shapes automatically. IntelliCorp’s Product
Development and Engineering Department has taken
many of these ideas and incorporated them in the
internals of the latest release of the KEE system,
KEE 3.0.

1. Class # shape. We have separated the semantic
class of objects from their implementation type.
We do not have to implement all the instance units
of a particular class in a particular format, or to
assume that all units of a particular format belong
to a particular class. Traditional implementations
of objects (for example, [4]) confuse the semantic
basis of an object with its implementation. (Of
course, it takes having a rich, pre-existing seman-
tic environment like a knowledge representation
system before one even has much of a semantic
basis available). We allow a given virtual unit
to be in several classes, and to change classes
dynamically.

10. Comparison with other
work

2. Building a shape is not wizardry. We make
it clear what the implementor of a shape must
provide, and give him an explicit (and visible)
place to put it. The operations tie directly to
the semantics of the KEE system; no knowledge
of magic flags or bits are required (though an
implementor can include her own set of magic
flags). Build’ g m a shape is straightforward enough
that it can be done programmatically.

Traditionally, if one wants to do object-oriented pro-
gramming, one programs in an object-oriented system.
One does not build one up around oneself. The
other interesting exception to this rule is the Portable
Common LOOPS system from Xerox [5]. That sys-
tem also takes advantage of functional redefinition to
implement objects in an existing (Lisp) environment.
Common LOOPS provides the ability to sensitize any
function to shapes of different units on several argu-
ments. This implies that they have developed a more
sophisticated set of program-modification functions
than has been required to insert virtual units in the
KEE system.

11. Summary

3. Implementation can be inserted at any
layer. Since the virtual handler is consulted for all
advised functions, the implementor can insert an
optimized version of any advised function for any
shape. He can also advise (almost) any function.
However, because of the lookup step in the virtual
advice, we cannot optimize any operation to be
faster than a symbol to value translation (typi-
cally gethash, classical get. value, or getprop),
though this translation may be possible, in many
cases, at compile time.

While we have described the virtual units project in
terms of changing the KEE system, the techniques
involved are applicable on a much wider scale. The
moral is that if one is in an environment where the
definitions of procedures can be programmatically
varied, it is possible to build a set of tools that al-
low object-oriented programming-even in an already
constructed system. If the semantics of that system
allow programmatic expression in terms of a simpler,
lower layer, then the object retro-fitting can be much
more straightforward. And if one can recognize the
underlying conceptual grains, the object retro-fitting
can combine these grains as appropriate.

Acknowledgments

4. Implementations can be built from compo- I would like to thank Greg Clemenson, Bill Faught,
nents. By identifying the grains of an action, we Richard Fikes, Bob Nado, and David Silverman for in-
can sequester these grains into components. We sightful discussions, thoughtful commentary on drafts
can selectively use these components to build gross of this paper, and guidance in fighting my way through
actions. the KEE core.

352 OOPSIA ‘87 Proceedings October 4-8, 1967

References

[l] Fikes, R., and Kehler, T., ‘The role of frame-based
representation in reasoning,” CACM, vol. 28, no. 9,
September 1985, pp. 904-920.

[2] ‘User’s Guide to Symbolics Computers, Volume 4,”
Symbolics Corporation, 1985, pp. 111-146.

[s] Gardner, M., Wheels, Life and Other Mathematical
Amusements, New York: Freeman, 1983, pp. 214-25’7.

(41 Goldberg, A. and Robson, D., SMALLTALK-
80: The Languirge and Its Implementation, Reading,
Massachusetts: Addison-Wesley, 1983.

[6] Bobrow, D., Kahn, K., Kiczals, G., Masin-
ter, L., Stefik, M., and Zdybel, F., “Common LOOPS:
Merging Lisp and object-oriented programming,” in
OOPSLA ‘86: Object-Oriented Programming Sys-
tems, Languages, and Applications, Portland, Oregon,
September 1986, pp. 17-29.

Appendix: Glossary of KEE system functions

Table 1 describes the KEE system functions mentioned in this paper.

Function (arguments) Description

add. child Makes unit a member or subclass of parent, depending on the
(unit, parent, link-type) value of link-type.

add. value Adds new .value to the set of values of elot of unit.
(unit, alot, new. value)

get.valuee (unit, slot) Returns (as a list) the set of values of elot of unit.

get-value (unit, slot) Returns one of the memberz of the sef of values of that slot.

put.iralues Changes the values of elot of unit to be new .valuee.
(unit, elot , new .valuee)

put.facet.values Changes the values in facet of slot of unit to be new .valuee.
(unit, Blot, facet, new.valuee)

unitreference (name, kb) Looks for and returns the unit of name name in knowledge base
kb.

unit. comment (unit > Returns the comment (text description) for unit.

Table 1. Representive KEE system function8

odclber 48,1987 OOPSLA ‘87 Proceedings 353

